| Abbreviations | | | |---------------|--------------------|--| | | THF
XRPD
DSC | tetrahydrofuran
X-ray Powder Diffraction
Differential scanning calorimetry | The invention claimed is: 1. A compound of formula (I): selected from: - a compound of formula (I) characterised by an X-ray $_{35}$ powder diffraction pattern containing specific peaks of high intensity at 5.3° ($\pm 0.1^{\circ}$), 20.1° ($\pm 0.1^{\circ}$), 20.7° ($\pm 0.1^{\circ}$), 21.0° ($\pm 0.1^{\circ}$) and 21.3° ($\pm 0.1^{\circ}$) 2θ ; - a compound of formula (I) characterised by an X-ray powder diffraction pattern containing specific peaks of ⁴⁰ high intensity at 5.5° ($\pm 0.1^{\circ}$), 13.5° ($\pm 0.1^{\circ}$), 18.3° ($\pm 0.1^{\circ}$), 22.7° ($\pm 0.1^{\circ}$) and 24.3° ($\pm 0.1^{\circ}$) 2θ ; - a compound of formula (I) characterised by an X-ray powder diffraction pattern containing specific peaks of high intensity at 14.0° (±0.1°), 17.4° (±0.1°), 18.4° ⁴⁵ (±0.1°), 21.4° (±0.1°) and 24.1° (±0.1°) 2θ; and - a compound of formula (I) characterised by an X-ray powder diffraction pattern containing specific peaks of high intensity at 4.9° ($\pm 0.1^{\circ}$), 9.2° ($\pm 0.1^{\circ}$), 11.6° ($\pm 0.1^{\circ}$), 15.6° ($\pm 0.1^{\circ}$) and 16.4° ($\pm 0.1^{\circ}$) 2θ . - ${f 2}.$ A compound of formula (I) as claimed in claim ${f 1}$ that exists in an anhydrous form. - 3. A compound of formula (I) as claimed in claim 1 characterised by an X-ray powder diffraction pattern containing specific peaks at 5.3° ($\pm 0.1^{\circ}$), 8.0° ($\pm 0.1^{\circ}$), 9.6° ($\pm 0.1^{\circ}$), 13.9° ($\pm 0.1^{\circ}$), 15.3° ($\pm 0.1^{\circ}$), 20.1° ($\pm 0.1^{\circ}$), 20.7° ($\pm 0.1^{\circ}$), 21.0° (0.1°), 21.3° ($\pm 0.1^{\circ}$), 26.2° ($\pm 0.1^{\circ}$) and 27.5° ($\pm 0.1^{\circ}$) 20. - **4.** A compound of formula (I) as claimed in claim **1** $_{60}$ characterised by a differential scanning calorimetry curve to have an onset of melting which is in the range $146-152^{\circ}$ C. - **5.** A compound of formula (I) as claimed in claim **1** characterised by an X-ray powder diffraction pattern containing specific peaks at 5.5° ($\pm 0.1^{\circ}$), 6.8° ($\pm 0.1^{\circ}$), 10.6° 65 ($\pm 0.1^{\circ}$), 13.5° ($\pm 0.1^{\circ}$), 14.9° ($\pm 0.1^{\circ}$), 18.3° ($\pm 0.1^{\circ}$), 19.2° ($\pm 0.1^{\circ}$), 22.7° ($\pm 0.1^{\circ}$), 24.3° ($\pm 0.1^{\circ}$) and 27.1° (0.1°) 2 θ . **6**. A compound of formula (I) as claimed in claim **1** characterised by a differential scanning calorimetry curve to have an onset of melting which is in the range of $136-139^{\circ}$ C. 7. A compound of formula (I) as claimed in claim 1 characterised by an X-ray powder diffraction pattern containing specific peaks at 5.6° ($\pm0.1^{\circ}$), 12.5° ($\pm0.1^{\circ}$), 14.0° ($\pm0.1^{\circ}$), 17.4° ($\pm0.1^{\circ}$), 18.4° ($\pm0.1^{\circ}$), 21.4° ($\pm0.1^{\circ}$), 22.2° ($\pm0.1^{\circ}$), 22.9° ($\pm0.1^{\circ}$), 24.1° ($\pm0.1^{\circ}$) and 24.5° ($\pm0.1^{\circ}$) 2θ . **8**. A compound of formula (I) as claimed in claim **1** characterised by a differential scanning calorimetry curve to have an onset of melting which is in the range 127-132° C. 9. A compound of formula (I) as claimed in claim 1 characterised by an X-ray powder diffraction pattern con- (I) 15 taining specific peaks at 4.9° ($\pm 0.1^{\circ}$), 6.0° ($\pm 0.1^{\circ}$), 9.2° ($\pm 0.1^{\circ}$), 11.6° ($\pm 0.1^{\circ}$), 12.8° ($\pm 0.1^{\circ}$), 15.6° ($\pm 0.1^{\circ}$), 16.4° ($\pm 0.1^{\circ}$), 17.2° ($\pm 0.1^{\circ}$) and 18.1° ($\pm 0.1^{\circ}$) 2θ . 10. A compound of formula (I) as claimed in claim 1 characterised by a differential scanning calorimetry curve to have an onset of melting which at approximately 139° C. 11. A process for the preparation of a compound as claimed in claim 1, comprising crystallizing a compound of formula (I) from a solvent selected from the group consisting of a lower alkyl acetate, a lower alkyl alcohol, an aliphatic hydrocarbon, an aromatic hydrocarbon, a dialkyl ether, a dialkyl ketone, acetonitrile, water, and a mixture thereof. 12. A process as claimed in claim 11, wherein the solvent in selected from the group consisting of ethanol, ethyl 30 acetate, iso-propanol, iso-octane, acetonitrile, water, and a mixture thereof. 13. A process as claimed in claim 12 wherein the solvent is selected from the group consisting of a mixture of methanol and water, ethanol, ethyl acetate, a mixture of ethanol and water, a mixture of iso-propanol and water, a mixture of ethyl acetate and iso-octane, and acetonitrile. 14. A process for the production of a compound of formula (I) as claimed in claim 1, characterised by an X-ray powder diffraction pattern containing specific peaks at 5.3° ($\pm 0.1^{\circ}$), 20.1° ($\pm 0.1^{\circ}$), 20.7° ($\pm 0.1^{\circ}$), 21.0° ($\pm 0.1^{\circ}$) and 21.3° ($\pm 0.1^{\circ}$) 2 θ , comprising crystallizing the compound of formula (I) from a mixture of methanol and water. 15. A process as claimed in claim 14 which includes the step of using a seed. 16. A process according to claim 15 in which the seed is prepared by melting a compound of formula (I):